Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.793
Filtrar
1.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436063

RESUMO

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Assuntos
Doenças Fetais , Hidrocefalia , Células-Tronco Neurais , Nascimento Prematuro , Humanos , Feminino , Animais , Camundongos , Epêndima/patologia , Hidrocefalia/cirurgia , Hidrocefalia/metabolismo , Hemorragia Cerebral/terapia , Hemorragia Cerebral/metabolismo , Edema
2.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235522

RESUMO

Motile cilia on ependymal cells that line brain ventricular walls beat in concert to generate a flow of laminar cerebrospinal fluid (CSF). Dyneins and kinesins are ATPase microtubule motor proteins that promote the rhythmic beating of cilia axonemes. Despite common consensus about the importance of axonemal dynein motor proteins, little is known about how kinesin motors contribute to cilia motility. Here, we show that Kif6 is a slow processive motor (12.2±2.0 nm/s) on microtubules in vitro and localizes to both the apical cytoplasm and the axoneme in ependymal cells, although it does not display processive movement in vivo. Using a mouse mutant that models a human Kif6 mutation in a proband displaying macrocephaly, hypotonia and seizures, we found that loss of Kif6 function causes decreased ependymal cilia motility and, subsequently, decreases fluid flow on the surface of brain ventricular walls. Disruption of Kif6 also disrupts orientation of cilia, formation of robust apical actin networks and stabilization of basal bodies at the apical surface. This suggests a role for the Kif6 motor protein in the maintenance of ciliary homeostasis within ependymal cells.


Assuntos
Cílios , Cinesinas , Humanos , Encéfalo/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Epêndima , Cinesinas/metabolismo
3.
J Anat ; 244(3): 391-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37965891

RESUMO

In humans and most mammals, there is a notch-like portal, the foramen of Luschka (or lateral foramen), which connects the lumen of the fourth ventricle with the subdural space. Gross dissection, light and scanning electron microscopy, and µCT analysis revealed the presence of a foramen of Luschka in the American alligator (Alligator mississippiensis). In this species, the foramen of Luschka is a notch in the dorsolateral wall of the pons immediately caudal to the peduncular base of the cerebellum, near the rostral end of the telovelar membrane over the fourth ventricle. At the foramen of Luschka there was a transition from a superficial pia mater lining to a deep ependymal lining. There was continuity between the lumen of the fourth ventricle and the subdural space, via the foramen of Luschka. This anatomical continuity was further demonstrated by injecting Evans blue into the lateral ventricle which led to extravasation through the foramen of Luschka and pooling of the dye on the lateral surface of the brain. Simultaneous subdural and intraventricular recordings of cerebrospinal fluid (CSF) pressures revealed a stable agreement between the two pressures at rest. Perturbation of the system allowed for static and dynamic differences to develop, which could indicate varying flow patterns of CSF through the foramen of Luschka.


Assuntos
Jacarés e Crocodilos , Animais , Humanos , Espaço Subdural , Cerebelo , Quarto Ventrículo , Epêndima , Mamíferos
4.
Elife ; 122023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772792

RESUMO

The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber's cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.


Assuntos
Ventrículos Cerebrais , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Ventrículos Cerebrais/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Epêndima
5.
Cell Mol Neurobiol ; 43(8): 4103-4116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37620636

RESUMO

Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.


Assuntos
Hidrocefalia , Camundongos , Humanos , Animais , Hidrocefalia/genética , Epêndima/metabolismo , Regulação da Expressão Gênica , Mutação/genética , Diferenciação Celular , Cílios/genética , Cílios/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
6.
Sci Rep ; 13(1): 13586, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605005

RESUMO

Alzheimer's disease (AD) is characterized by extensive and selective death of neurons and deterioration of synapses and circuits in the brain. The Aß1-42 concentration is higher in an AD brain than in cognitively normal elderly individuals, and Aß1-42 exhibits neurotoxicity. Brain-derived Aß is transported into the cerebrospinal fluid (CSF), and CSF flow is driven in part by the beating of cilia and CSF secretion into ventricles. Ventricles are lined with ependyma whose apical surface is covered with motile cilia. Herein, we constructed an experimental system to measure the movement of ependymal cilia and examined the effects of Aß1-42 to the beating of cilia and neurons. The circadian rhythm of the beating frequency of ependymal cilia was detected using brain wall explant-cultures containing ependymal cilia and neurons; the beating frequency was high at midday and low at midnight. Aß1-42 decreased the peak frequency of ciliary beating at midday and slightly increased it at midnight. Aß1-42 exhibited neurotoxicity to neurons on the non-ciliated side of the explant culture, while the neurotoxicity was less evident in neurons on the ciliated side. The neurotoxic effect of Aß1-42 was diminished when 1 mPa of shear stress was generated using a flow chamber system that mimicked the flow by cilia. These results indicate that Aß1-42 affects the circadian rhythm of ciliary beating, decreases the medium flow by the cilia-beating, and enhances the neurotoxic action of Aß1-42 in the brain explant culture.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Idoso , Humanos , Cílios , Ventrículos Cerebrais , Encéfalo , Epêndima , Peptídeos beta-Amiloides/toxicidade
7.
Stem Cell Res Ther ; 14(1): 175, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408068

RESUMO

Ependymal cells, a dormant population of ciliated progenitors found within the central canal of the spinal cord, undergo significant alterations after spinal cord injury (SCI). Understanding the molecular events that induce ependymal cell activation after SCI represents the first step toward controlling the response of the endogenous regenerative machinery in damaged tissues. This response involves the activation of specific signaling pathways in the spinal cord that promotes self-renewal, proliferation, and differentiation. We review our current understanding of the signaling pathways and molecular events that mediate the SCI-induced activation of ependymal cells by focusing on the roles of some cell adhesion molecules, cellular membrane receptors, ion channels (and their crosstalk), and transcription factors. An orchestrated response regulating the expression of receptors and ion channels fine-tunes and coordinates the activation of ependymal cells after SCI or cell transplantation. Understanding the major players in the activation of ependymal cells may help us to understand whether these cells represent a critical source of cells contributing to cellular replacement and tissue regeneration after SCI. A more complete understanding of the role and function of individual signaling pathways in endogenous spinal cord progenitors may foster the development of novel targeted therapies to induce the regeneration of the injured spinal cord.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal , Neuroglia/metabolismo , Epêndima/metabolismo , Canais Iônicos/metabolismo
8.
Cell Mol Life Sci ; 80(7): 181, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329342

RESUMO

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.


Assuntos
Proteínas Hedgehog , Medula Espinal , Humanos , Camundongos , Animais , Proteínas Hedgehog/genética , Medula Espinal/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição/metabolismo , Epêndima/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
9.
Methods Cell Biol ; 176: 103-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164533

RESUMO

Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.


Assuntos
Hidrocefalia , Peixe-Zebra , Animais , Peixe-Zebra/genética , Encéfalo/patologia , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Animais Geneticamente Modificados , Cílios/metabolismo
10.
Biomolecules ; 13(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238624

RESUMO

The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Humanos , Epêndima/metabolismo , Epêndima/patologia , Fatores de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo
11.
PLoS Biol ; 21(3): e3002008, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862758

RESUMO

Idiopathic scoliosis (IS) is the most common spinal deformity diagnosed in childhood or early adolescence, while the underlying pathogenesis of this serious condition remains largely unknown. Here, we report zebrafish ccdc57 mutants exhibiting scoliosis during late development, similar to that observed in human adolescent idiopathic scoliosis (AIS). Zebrafish ccdc57 mutants developed hydrocephalus due to cerebrospinal fluid (CSF) flow defects caused by uncoordinated cilia beating in ependymal cells. Mechanistically, Ccdc57 localizes to ciliary basal bodies and controls the planar polarity of ependymal cells through regulating the organization of microtubule networks and proper positioning of basal bodies. Interestingly, ependymal cell polarity defects were first observed in ccdc57 mutants at approximately 17 days postfertilization, the same time when scoliosis became apparent and prior to multiciliated ependymal cell maturation. We further showed that mutant spinal cord exhibited altered expression pattern of the Urotensin neuropeptides, in consistent with the curvature of the spine. Strikingly, human IS patients also displayed abnormal Urotensin signaling in paraspinal muscles. Altogether, our data suggest that ependymal polarity defects are one of the earliest sign of scoliosis in zebrafish and disclose the essential and conserved roles of Urotensin signaling during scoliosis progression.


Assuntos
Hidrocefalia , Escoliose , Urotensinas , Animais , Cílios/metabolismo , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Escoliose/genética , Escoliose/metabolismo , Escoliose/patologia , Urotensinas/metabolismo , Peixe-Zebra
12.
Biomolecules ; 13(2)2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36830582

RESUMO

The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood-CSF barrier. These cells form a contiguous cell sheet with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast, CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin-dystroglycan complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan expression was associated with laminin staining in the glial plate and the CP epithelium. This suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and could possibly serve as a drainage and clearing pathway for metabolites.


Assuntos
Plexo Corióideo , Epêndima , Humanos , Epêndima/metabolismo , Plexo Corióideo/metabolismo , Distrofina , Distroglicanas/metabolismo , Aquaporina 4/metabolismo , Encéfalo/metabolismo
13.
Cell Tissue Res ; 392(2): 535-551, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36764939

RESUMO

Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.


Assuntos
Polaridade Celular , Cílios , Animais , Camundongos , Cílios/metabolismo , Epêndima/metabolismo , Ventrículos Cerebrais/metabolismo , Proteínas de Transporte/metabolismo , Via de Sinalização Wnt , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
14.
Neurol Sci ; 44(6): 2223-2225, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36823245

RESUMO

Ring-shaped lateral ventricular nodules (RSLVN) are small and round nodules attached on the ependyma of lateral ventricles with unknown nature. They are considered "leave me alone lesions" and differential diagnosis includes subependymal grey matter heterotopia, subependymomas, subependymal hamartomas, and subependymal giant cell astrocytomas. In this short article, we report imaging findings of RSLNVs discovered in five patients, underlining the pivotal role of neuroimaging in the diagnostic path.


Assuntos
Astrocitoma , Ventrículos Laterais , Humanos , Ventrículos Laterais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Epêndima , Tomografia Computadorizada por Raios X
15.
Anat Rec (Hoboken) ; 306(4): 889-904, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684989

RESUMO

Secondary neurulation is a common feature of vertebrate development, which in non-mammalian and non-anuran vertebrates, results in the formation of a caudal spinal cord. The present study was undertaken to describe the terminal end of the caudal spinal cord in a crocodylian, a group chosen for their unique status of a living-tailed archosaur. The caudal spinal cord of Alligator mississippiensis terminates near the intervertebral joint between the fourth and fifth terminal vertebrae. Prior to this termination, the dorsal root ganglia get proportionately larger, then stop before the termination of the spinal cord; and the gray matter of the spinal cord is lost producing an unusual morphology in which an ependymal-lined central canal is surrounded by only white matter which is not divided into a cauda equina. The inner layer of the meninges (the pia-arachnoid) courses over the distal end of the spinal cord and forms a ventral attachment, reminiscent of a very short Filum terminale; there is no caudal cistern. The dura extends beyond the termination of the spinal cord, continuing for at least the length of the fourth terminal vertebra, forming a structure herein termed the distal meningeal sheath. During its course, the distal meningeal sheath surrounds a mass of mesothelial cells, then terminates as an attachment on the dorsal surface of the vertebra.


Assuntos
Jacarés e Crocodilos , Cauda Equina , Animais , Medula Espinal/anatomia & histologia , Cauda Equina/anatomia & histologia , Epêndima , Dura-Máter
16.
Neurosci Res ; 188: 28-38, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375656

RESUMO

The aqueduct of Sylvius connects the third with the fourth ventricle and is surrounded by the Periaqueductal Grey. Here, we report a novel niche of cells in the dorsal section of the aqueduct, hereby named dorsal aqueduct niche or DAN, by applying a battery of selective markers and transgenic mouse lines. The somata of DAN cells are located toward the lumen of the ventricle forming multiple layers in close association with the cerebrospinal fluid (CSF). A single process emerges from the soma and run with the blood vessels. Cells of the DAN express radial glia/stem cell markers such as GFAP, vimentin and nestin, and the glutamate transporter GLAST or the oligodendrocyte precursor/pericyte marker NG2, thereby suggesting their potential for the generation of new cells. Morphologically, DAN cells resemble tanycytes of the third ventricle, which transfer biochemical signals from the CSF to the central nervous system and display proliferative capacity. The aqueduct ependymal lining can proliferate as observed by the integration of BrdU and expression of Ki67. Thus, the dorsal section of the aqueduct of Sylvius possesses cells that may act a niche of new glial cells in the adult mouse brain.


Assuntos
Aqueduto do Mesencéfalo , Terceiro Ventrículo , Animais , Camundongos , Aqueduto do Mesencéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Terceiro Ventrículo/metabolismo , Neuroglia/metabolismo , Epêndima/metabolismo , Camundongos Transgênicos
17.
Cell Rep ; 41(11): 111810, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516767

RESUMO

Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.


Assuntos
Células-Tronco Neurais , Proteína Supressora de Tumor p53 , Geminina/genética , Geminina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Epêndima/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco Neurais/metabolismo , Diferenciação Celular
18.
Neurobiol Dis ; 175: 105913, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341771

RESUMO

Dysfunction of motile cilia in ependymal cells has been proposed to be a pathogenic cause of cerebrospinal fluid (CSF) overaccumulation leading to ventricular expansion in hydrocephalus, primarily based on observations of enlarged ventricles in mouse models of primary ciliary dyskinesia. Here, we review human and animal evidence that warrants a rethinking of the cilia hypothesis in hydrocephalus. First, we discuss neuroembryology and physiology data that do not support a role for ependymal cilia as the primary propeller of CSF movement across the ventricles in the human brain, particularly during in utero development prior to the functional maturation of ependymal cilia. Second, we highlight that in contrast to mouse models, motile ciliopathies infrequently cause hydrocephalus in humans. Instead, gene mutations affecting motile cilia function impact not only ependymal cilia but also motile cilia found in other organ systems outside of the brain, causing a clinical syndrome of recurrent respiratory infections and situs inversus, symptoms that do not typically accompany most cases of human hydrocephalus. Finally, we postulate that certain cases of hydrocephalus associated with ciliary gene mutations may arise not necessarily just from loss of cilia-generated CSF flow but also from altered neurodevelopment, given the potential functions of ciliary genes in signaling and neural stem cell fate beyond generating fluid flow. Further investigations are needed to clarify the link between motile cilia, CSF physiology, and brain development, the understanding of which has implications for the care of patients with hydrocephalus and other related neurodevelopmental disorders.


Assuntos
Cílios , Hidrocefalia , Animais , Camundongos , Humanos , Cílios/patologia , Hidrocefalia/etiologia , Hidrocefalia/patologia , Epêndima/patologia , Encéfalo/patologia , Modelos Animais de Doenças
19.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078068

RESUMO

This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to investigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and their processes extended through the tectal laminae and ended at the surface of the tectum as a subpial end-foot. Two cell types of ECs were identified: cuboidal non-ciliated (5.68 ± 0.84/100 µm2) and columnar ciliated (EC3.22 ± 0.71/100 µm2). Immunohistochemical analysis revealed two types of GFAP immunoreactive cells: ECs and astrocytes. The ECs showed the expression of IL-1ß, APG5, and Nfr2. Moreover, ECs showed immunostaining for myostatin, S100, and SOX9 in their cytoplasmic processes. The proliferative activity of the neighboring stem cells was also distinct. The most interesting finding in this study was the glia-neuron interaction, where the processes of ECs met the progenitor neuronal cells in the ependymal area of the ventricular wall. These cells showed bundles of intermediate filaments in their processes and basal poles and were connected by desmosomes, followed by gap junctions. Many membrane-bounded vesicles could be demonstrated on the surface of the ciliated ECs that contained neurosecretion. The abluminal and lateral cell surfaces of ECs showed pinocytotic activities with many coated vesicles, while their apical cytoplasm contained centrioles. The occurrence of stem cells in close position to the ECs, and the presence of bundles of generating axons in direct contact with these stem cells indicate the role of ECs in neurogenesis. The TEM results revealed the presence of neural stem cells in a close position to the ECs, in addition to the presence of bundles of generating axons in direct contact with these stem cells. The present study indicates the role of ECs in neurogenesis.


Assuntos
Células-Tronco Neurais , Poecilia , Animais , Encéfalo , Epêndima , Neuroglia
20.
Cells ; 11(15)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954220

RESUMO

Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix-/-) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix-/- mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix-/- and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix-/- mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.


Assuntos
Epêndima , Hidrocefalia , Fatores de Transcrição NFI , Animais , Fenômenos Fisiológicos Celulares , Hidrocefalia/genética , Ventrículos Laterais , Camundongos , Fatores de Transcrição NFI/genética , Neuroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...